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A system of hydrodynamic equations is solved for an inviscid liquid flowing in an elastic pipe. It is shown 

that this system is equivalent to a nonlinear Schr3dinger equation. The solution is considered as applied to 

the development of hydroelastic components of hydraulic systems. 

Calculation of the flow in an elastic pipeline is a problem of hydroelasticity. Some questions connected with 

this problem were treated, for example, in [i ], where steady-state viscous flow in an elastic pipe was investigated 

within the framework of the linear equation of momentum. In that study a linear relation of the pipe radius to the 

pressure on the pipe walls was used. 

In the design of hydraulic systems containing an elastic thin-walled pipeline, it is necessary to solve the 

problem of the propagation of a solitary wave (soliton) induced by ejection of a volume of liquid. Determination of 

the soliton shape is important for timely operation of the hydrorelay. 

In [2 ] a method was proposed for determination of the soliton shape and it was shown that the problem 

could be reduced to solution of the KdV equation using Hooke's law written as p = cAS/So. 

However, practical calculations have shown that if rather large volumes are ejected, this law should be used 

in the slightly different form 

AS (a) 
p =  --C 

S '  

where AS -- S - S o  and the minus sign indicates that with elastic deformations the force exerted on the liquid is 

directed opposite its motion along the pipeline. 

Let us consider a solution of the hydrodynamic equations for an inviscid liquid flow in the form suggested 

in [3 ]: 

_ ou lO os) (2) OU + u  +--  = 0  
ot -~x p SOx ' 

o s  + o (uS) = o .  (3) 
Ot Ox 

Here, unlike [3 ], we retain the nonlinear convective term in the momentum equation. 

The solution of momentum equation (2) and continuity equation (3) will be sought using the complex 

velocity potential 7" = 7' (x, t). It will be expanded in a series by using the perturbation 2 similarly to what is done 

in quantum mechanics in going from the Sch/Jdinger to the Hamilton-Jacobi equation [4 ]: 

7 ' = 7 " 0 + 7 ~ o 1 +  

NOW define the function qJ by the formula 

7"2 + "'" 
(4) 
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W = exp 

The use of the first two terms in series (4), gives 

w =  IWl exp ( j500)  . (6) 

Here I qJl = exp(501) is the modulus of the function qJ, u = O~o/ax is the liquid velocity in the pipeline, since IP0 is 
the real part of the velocity potential up to 22 . 

If IqJl = (S ~So) 1/2 is assumed, then with the use of (1) the equality pS = - c ( S  - So) = -cSo(IqJl  2 - 

1) can be written. The last term in Eq. (2) takes the form: 

1 O (pS) = _ 2a 2 O (In I ~ 1 )  = - 2a 2 0501 
-fi Sax ~ a x '  

(7) 

where a--- x/-c-Tp is the velocity of propagation of a pressure wave along the pipeline and ~o I = In I~1.  

With the use of the velocity potential, momentum equation (2) can be integrated once; then the system of 

equations (2) and (3) takes the form 

2 

a~~176 + 2 - 2a2~h = O, (8) 
Ot 

, ,21ti/] + 0// ' ']qJI 2 = 0 .  (9) 0 
Ot Ox 

In the integration the right-hand side of Eq. (8) is assumed to be zero due to the appropriate choice of the 

initial level of the potential ~o 0 [5 ]. 

Next, it will be shown that system (8) and (9) is equivalent to the Schr~Jdinger nonlinear equation. To do 

this, we will consider the unsteady-state Schr6dinger equation 

OqJ '~ a2qj 2a2 (10) 
i - - +  - - - - - - 5 0 1 q  J.  

at 2 0 x  2 2 

Bearing in mind that 

OtI J i 0 s  and o 2 q j - - 1 W ( 0 t ~  2 + - / q J o - ~  

at - X u 2  at ox 2 2 2 Ox 2 ox 2 '  

proceeding from (10), we obtain after separation of the real and imaginary parts: [{2 
o, 2 ] O~P'~-O-O'-I-I(~XO) -- 2a2501 ='2- OX ) - ' b ~ j  = o (,~2), (11) 

0501 05000~01 1 o2/Oo 
- - + - -  - - +  - -  - 0 .  

ot Ox Ox 2 0 x  2 

(12) 

Equation (12) is completely equivalent to (9), if it is taken into account that 
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0~~ 1 0 IWI e 
- a n d  2 

ot 2 Iq,  I z ot ox 2 IWl 2 ox 

Just as in series (4), only terms linear in the perturbation 2 were retained in Eq. (11). Thus,  Eqs. (11), 

(12) and, consequently,  (10) are completely equivalent to system (8) and (9). 

The nonlinear SchrSdinger equation is written in the form 

�9 Oq J a 0 2 xp 
t - - -  - co (In IWl)~ (13) 

ot k ax 2 

where co --- 2a2/;t is the cyclic frequency; k -- 2a/2  is the wave number. 

Following [6 ], the solution of Eq. (13) will be sought as 

qJ = f (kx - cot) exp [i (rx - c~t) ] ,  (14) 

where the constants r and 6 as well as the function f ( k x  - cot) are unknown so far. With (6) taken into account, it 

can be concluded that I WI = f ( k x  - cot). 

Substitution of (14) into (13) gives 

,, ar (15) 
akf  + i f ' ( - c o + 2 a r ) + f  ~ - T  + c o f l n f = 0 "  

In Eq. (15) differentiation is performed with respect to the variable ~ -- kx  - cot and must not have imaginary 

terms since the function f =  lu21 is a real number. Assuming r = co/2a and bearing in mind that co -- ak, we have 

f " + f  - - ~  + f l n f = 0 .  

The solution of Eq. (16) is sought in the form 

f = C 1 exp [C 2 (kx - w t ) 2 / 2 ] .  (17) 

The substitution of (17) into (16) gives 

/ C 2 +  - ~  + l n C  1 + ( k x - c o t )  2 C 2 + ~  = 0 .  

The last term in Eq. (18) should not depend on the coordinate x the time t, i.e., C2 -- 1/2; then C1 = exp 

(3/4 - 6/a~). 

Consequently,  

( 3  ~ )  (19) f =  I~1 = exp ~ - -  exp [ -  ( k x - c o t ) 2 / 4 ] .  

In view of the fact that the cross-sectional area is S -- SOI~I 2 and in view of the boundary  condition S = 

So at x --, -+ 0% we finally find the shape of the solitary wave propagating along the elastic pipeline with ejection of 

large volumes of liquid: 

S = S O + S A exp [ -  (kx - cot)2/2 ] ,  

where S A -- A S m a  x corresponds to the maximum value of the additional area in (1): 

S z = S o e x p ( 3  2r 
2 r �9 
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Here 6 depends on the characteristic of the pipeline material. At large 6, typical of rigid pipes, SA 

Small values of 6 are typical of an elastic pipeline. 

The value of the excess pressure in the pipeline is determined using Eq. (1): 

p =  - c - -  
s - s o  

S - - c  
{ ( Sz 

1 -  1 /  1 +--soeXp [ - ( k x - w t ) 2 / 2 ]  , 

For large increments of the area AS we have 

tends to zero. 

SA 
p = - c-~-  exp [ -  (kx - wt)2/2 ] = Pmax exp [ -  (kx - a~t)2/2 ], (20) 

where Pmax is the maximum excess pressure in the soliton. The shape of the soliton and the pressure in it follow 

a Gaussian curve. 

It follows from (20) that the momentum of the pressure and the cross-sectional area appear similar to each 

other, just as in the case where the KdV model was used [2 ]. However, unlike the solitary waves described by the 

KdV equation, in this case, where Hooke's law was used in the form of (1), a nondispersed wave, propagating with 
the velocity a = vr~p,  is obtained. This allows a simpler design of hydraulic relays in hydroelastic components of 

hydraulic systems. 

N O T A T I O N  

C1 and C2, constants; c, characteristic of the material of the pipe (elasticity); i, imaginary unit; p, excess 

pressure on the pipe wall; S, instantaneous cross-sectional area of the pipe; So, undisturbed cross-section of the 
pipe; AS, increment of the cross-sectional area of the pipe; p, liquid density. 
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