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NONLINEAR SCHRODINGER EQUATION IN A
HYDROELASTICITY PROBLEM

A. N. Volobuev and A. P. Tolstonogov UDC §32.5.52

A system of hydrodynamic equations is solved for an inviscid liquid flowing in an elastic pipe. It is shown
that this system is equivalent to a nonlinear Schrodinger equation. The solution is considered as applied to
the development of hydroelastic components of hydraulic systems.

Calculation of the flow in an elastic pipeline is a problem of hydroelasticity. Some questions connected with
this problem were treated, for example, in [1], where steady-state viscous flow in an elastic pipe was investigated
within the framework of the linear equation of momentum. In that study a linear relation of the pipe radius to the
pressure on the pipe walls was used.

In the design of hydraulic systems containing an elastic thin-walled pipeline, it is necessary to solve the
problem of the propagation of a solitary wave (soliton) induced by ejection of a volume of liquid. Determination of
the soliton shape is important for timely operation of the hydrorelay.

In [2] a method was proposed for determination of the soliton shape and it was shown that the problem
could be reduced to solution of the KdV equation using Hooke’s law written as p = ¢cAS/Sp.

However, practical calculations have shown that if rather large volumes are ejected, this law should be used
in the slightly different form

p=—chS, M

where AS = §—Sg and the minus sign indicates that with elastic deformations the force exerted on the liquid is
directed opposite its motion along the pipeline.
Let us consider a solution of the hydrodynamic equations for an inviscid liquid flow in the form suggested
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Here, unlike [3], we retain the nonlinear convective term in the momentum equation.

The solution of momentum equation (2) and continuity equation (3) will be sought using the complex
velocity potential ¢ = ¢ (x, 1). It will be expanded in a series by using the perturbation A similarly to what is done
in quantum mechanics in going from the Schodinger to the Hamilton-Jacobi equation [41]:
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Now define the function ¥ by the formula
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‘P=exp(;lf¢)- &)

The use of the first two terms in series (4), gives

Y= |y exp(;i[%). (6)

Here |W!1 = exp(ep;) is the modulus of the function W, u = dp(/dx is the liquid velocity in the pipeline, since ¢ is
the real part of the velocity potential up to A2,

If 1Wl = (S /So)l/2 is assumed, then with the use of (1) the equality pS = —c(S — Sg) = —cSO(I‘IA’I2 -
1) can be written. The last term in Eq. (2) takes the form:

el _ 2 7
=-24" - (n |¥]) = - 24" —, (7

where a = Vc¢/p is the velocity of propagation of a pressure wave along the pipeline and ¢; = In W/,
With the use of the velocity potential, momentum equation (2) can be integrated once; then the system of
equations (2) and (3) takes the form
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In the integration the right-hand side of Eq. (8) is assumed to be zero due to the appropriate choice of the
initial level of the potential pg [S]. '

Next, it will be shown that system (8) and (9) is equivalent to the Schrodinger nonlinear equation. To do
this, we will consider the unsteady-state Schrodinger equation
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proceeding from (10), we obtain after separation of the real and imaginary parts:
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Equation (12) is completely equivalent to (9), if it is taken into account that
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Just as in series (4), only terms linear in the perturbation A were retained in Eq. (11). Thus, Egs. (11),
(12) and, consequently, (10) are completely equivalent to system (8) and (9).
The nonlinear Schrodinger equation is written in the form

2
ii‘?-=£9—‘£=-w(1n|1p|)1p, (13)

at k 6x2

where w = 2a%/A is the cyclic frequency; k£ = 2a/A is the wave number.
Following [6], the solution of Eq. (13) will be sought as

W = f(kx — wi) exp [i (rx — 591, a4

where the constants r and & as well as the function f(kx — wt) are unknown so far. With (6) taken into account, it
can be concluded that |W! = f(kx — wD).
Substitution of (14) into (13) gives

2
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In Eq. (15) differentiation is performed with respect to the variable & = kx — wf and must not have imaginary
terms since the function = 1W¥! is a real number. Assuming r = w/2a and bearing in mind that w = ak, we have

f”+f(%—%)+flnf=0. (16)
The solution of Eq. (16) is sought in the form
£=Cyexp [Cy (kx — w1)*/2], an
The substitution of (17) into (16) gives
C2+(%—%)+1nC‘+(kx—wt)2(C§+%L)=O. (18)

The last term in Eq. (18) should not depend on the coordinate x the time ¢, i.e., Co = 1/2; then C; = exp
(3/4 - S/w).
Consequently,

=¥ =exp(%—%)exp [— (kx—wt)2/4]. (19)

In view of the fact that the cross-sectional area is S = Spl¥! 2 and in view of the boundary condition S =
Sp at x » =, we finally find the shape of the solitary wave propagating along the elastic pipeline with ejection of
large volumes of liquid:
S =Sy + S, exp [~ (kx — 01)°/2],
where S4 = ASpax corresponds to the maximum value of the additional area in (1):

3 28
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Here J depends on the characteristic of the pipeline material. At large J, typical of rigid pipes, S4 tends to zero.
Small values of d are typical of an elastic pipeline.
The value of the excess pressure in the pipeline is determined using Eq. (1):

S—8 ' s
p=-c— 0=—c{1—1/[1+'£exp[—(kx—wt)2/2]J}.

For large increments of the area AS we have

p=-— CESA exp [— (kx — 8)°/2] = po,, exp [— (kx — wt)>/2], (20)
where ppay 18 the maximum excess pressure in the soliton. The shape of the soliton and the pressure in it follow
a Gaussian curve,

It follows from (20) that the momentum of the pressure and the cross-sectional area appear similar to each
other, just as in the case where the KdV model was used [2 1. However, unlike the solitary waves described by the
Kdv equation, in this case, where Hooke’s law was used in the form of (1), a nondispersed wave, propagating with
the velocity a = Vc/p, is obtained. This allows a simpler design of hydraulic relays in hydroelastic components of
hydraulic systems.

NOTATION

C; and C,, constants; ¢, characteristic of the material of the pipe (elasticity); i, imaginary unit; p, excess
pressure on the pipe wall; S, instantancous cross-sectional area of the pipe; Sg, undisturbed cross-section of the
pipe; AS, increment of the cross-sectional area of the pipe; p, liquid density.
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